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Abstract- Renewable power plants contribute almost insignificantly in the country’s electricity supply. Due to the environmental 

uncertainty and the rapid development of modern technology in the recent century, it is usually necessary to predict future 

situations using insufficient data over a short period. Renewable fuels and biofuels as a significant replacement for fossil fuels 

have been of great interest in recent decades. Optimum design of supply chains is an essential requirement for the commercial 

production of biofuels. This research has employed mathematical optimization and a mixed integrated linear programming 

(MILP) approach for the feedstock pathway to the fuel supply chain (BSC) scenario. The further examination includes the effect 

of the autoregressive moving average (ARMA) time series structure for the demand of biofuels on the design of the supply chain. 

After developing the model, a numerical example of 8 years was used in the supply chain to gain a wider perspective. The results 

showed that the optimal cost can be determined and 4 valid locations were adopted out of 10 proposed refinery building sites. 

Finally, it evaluates and validates the proposed model with experimental results. 

Keywords Renewable, Fuel Supply Chain, Time Series, Biomass, Biofuels. 

 

1. Introduction 

Energy consumption has increased in the world and 

particularly in industrialized countries, due to changes in 

lifestyle and population growth. In addition to various social 

and environmental problems associated with the use of fossil 

fuels, the non-renewability of these fuels [1] has raised 

concerns about energy consumption. In recent years, the 

production of biofuels has been raised as a promising solution 

to this problem, which has attracted the attention of many 

researchers for developing the supply chain of such fuels [2]. 

Biomass as raw material, including agricultural wastes 

(consisting of plant and animal matter), forest products, and 

municipal and industrial wastes, is used for the production of 

biofuels and the generation of heat and electricity in the 

bioenergy supply chain[3]. 

Biomasses can be extracted from many materials. 

Biomass has been around for three generations. Their earliest 

generation was extracted from oilseeds and sugar plants. 

Biomasses can be extracted from many materials. Biomass has 

been around for three generations. Their earliest generation 

was extracted from oilseeds and sugar plants. The big conflict 

of this generation of biofuels is its users. For oilseeds and 

sugar plants, there are applications (first generation biomass) 

in human food, animal feed and fuel industry raw material. 

Therefore, the use of non-edible raw materials has increased 

in the production of biofuels. However, the use of non-edible 

raw materials is facing many challenges[4]. Biomass raw 

materials for the second generation of fuels include 

lignocellulosic biomass, agricultural waste, and wood waste 

and products. Algae are non-edible raw materials that have 

recently been introduced as the third-generation biomass for 

biofuel production. Today, there is controversy regarding 

making a decision on the use of land for the cultivation of food 

products or the first generation of raw materials. So 

researchers are now studying the lignocellulosic biomass raw 
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materials to address these problems[5]. Biomass is harvested 

from agricultural land and initial transportation preparation 

measures are taken at the sites. These acts may include 

chopping, cutting, packaging, measuring, etc. In later stages 

the biomass can be processed in tanks or outside and 

transported to a refinery afterwards[6]. There may be a pre-

refinery and preparation process at this stage. Reactor 

palletizing and transfer is a recent method in the supply chain 

and is used in advanced systems. The refinery fuel can be used 

in domestic, industry, car and power stations[7]. Figure 1 

shows the biofuel supply chain (BSC). 

 

Fig. 1. Biofuel supply chain (BSC) and its applications.  

In the biofuel supply chain, decision variables and 

sequential activities exist. Land selection, planting, 

fertilization and spraying, harvesting, preparation, 

transportation to storage tanks, refineries and production 

processes for biofuels are available in this chain. Currently, 

mathematical models can study and develop optimization 

models variables with a variety of variations with software and 

intensive decision support systems (DSS). The wheat farm has 

a high biomass production yield, but it has a high rental 

cost[8]. In addition, as the planting time and method are 

interdependent, different scenarios need to be considered 

together. Mathematical optimization and the Mixed Integrated 

Linear Programming approach (MILP) are one of the most 

well-known fuel supply chain (BSC) modelling methods in 

the network design scenario. The localization of facilities is 

considered one of the critical goals for using MILP models. 

Decision variables in the localization of facilities can be 

considered as binary form either technologically or the 

capacity used in a facility. Because the design of a BSC 

network affects biomass logistics, the chain decision-makers 

simultaneously optimize the design of the BSC network and 

the flow of materials between facilities[9]. In this regard, they 

have developed the MILP and simultaneously optimize the 

design of the BSC network; thereby, they have found the flow 

of materials between the facilities[10,11]. Mole et al. were the 

first to develop the MILP model in which the location of 

processing sites was optimized by minimizing biomass 

logistic costs[12]. Strategic planning of the BSC, optimum 

biomass allocation based on uncertain localization 

decisions[13], and optimal design and production of 

bioethanol supply chain are some examples of MILP models 

in the BSC network design[14]. 

The main obstacle to the biofuel commercialization is its 

complex production processes. This complexity comes from 

different forms of various parameters, including uncertainty as 

one of the common forms of variation in the BSC parameters. 

The supply of biomass raw material, biofuel production and 

demand, price, and logistics are the standard parameters 

associated with the uncertainty. The study of MILP models 

allows us to observe many studies related to the optimization 

models for the BSC network design under uncertainty[15]. 

Dalmas et al. [16], for example, designed a random dynamic 

MILP model for designing a BSC under market uncertainty 

conditions. Giarola et al. proposed a multi-period 

multidimensional MILP model for optimization of bioethanol 

supply chain network design by taking the biomass and carbon 

market uncertainties into account[17]. 

Time series data are another form of variables defined as 

a sequence of numerical data in repeated orders, usually 

occurring at uniform intervals[18]. As a time series model, 

ARMA has provided management insights into the supply 

chain dynamics[19]. A multilevel supply chain model based 

on the ARIMA time series models was proposed by Gilbert 

[20], who first used the general class of ARIMA time series 

models for modeling customer demand in the supply chain, 

and recommended the ARIMA models for time series orders 

and inventory[21]. The bullwhip effect phenomenon is also 

discussed by this model, the effect of which on the supply 

chain was also investigated by Lee et al. Supply chain 

performance is affected by prediction accuracy. Precision 

predictive systems are of high value in a chain[22]. 

Globalization will lead to supply chain complexity and 

imbalances. Chan et al. investigated the impact of fuzzy time 

series prediction systems on a supply chain with 

disturbances[23]. They also showed that an excellent method 

to fit with ARMA models is to use fuzzy time series with 

higher levels. The time series forecasting plays a central role 

in risk management, portfolio selection, asset valuations, 

option pricing, and hedging strategies in modern Finance. 

The rest of this article is organized as follows. The 

problem definition is expressed in the next section. In 

mathematical modeling, the proposed approach modeling is 

expressed step by step, followed by a description of the 

ARMA model. In the next section, the proposed model is run 

on a numerical example. A final validation with conclusions 

and suggestions are presented in the end. 

2. Materials and Method 

2.1.  Problem Definition  

Table 1 lists the indices, sets, parameters, and decision 

variables. This research considers a four-level BSC. The 

biomass can be cultivated in supply regions i on existing 

marginal lands not used for other agricultural purposes. In this 

research, the harvest method is assumed to be in the form of 

square bales. After harvesting, the biomass product is 

transferred to storage depots located in j regions. Biomass 

storage in the warehouse will partially destroy it. After 

storage, the biomass product is transported by a truck from the 

warehouse, i, to the refinery, r, for conversion into biofuels, 

and the produced fuel is then shipped to the demand site, k. the 

proposed mathematical model aims to minimize the total 
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biofuel supply chain cost by determining the optimal levels of 

decision variables. 

2.2. Assumptions of the Problem 

The assumptions of the proposed model are as follows: 

• Biomass harvesting is assumed as a large square bale of 

397 kg with easy transportation and storage[24,25]. 

• Studies show that multiple harvests over a year reduce 

total biomass production due to the weakening of the root. 

Therefore, one harvest (one-year periods) immediately after 

the first cold season is used in this model as it is known as the 

most eco-friendly and cost-effective harvesting method in the 

reference [26]. 

Since road transport is available in all regions, only trucks 

and trailers are considered for the road transport of biomass 

and biofuel, respectively, in this research. 

• It is assumed that per capita demand for biofuels is 

determined and definite in each demand region. 

2.3. Mathematical Modeling 

A MILP model is proposed to minimize the total cost of a 

BSC network by determining optimum levels of decision 

variables. The objective function (Eq. 1) minimizes the total 

cost of a BSC and includes nine parts. The first part calculates 

the cost of marginal land lease in all supply sites over all 

periods. The second and third parts refer to the cost of biomass 

cultivation and harvesting in all supply sites i at all times. The 

fourth part estimates biomass storage costs in all storehouses 

located in sites j at all periods. The fifth to seventh parts 

respectively deal with the costs of biomass transportation from 

the supply sites i to the storehouses located in areas j and from 

storehouses to refineries in r regions, and the transport of 

biofuels from these refineries to demand sites in k areas at all 

periods. The eighth part calculates the fixed cost of installed 

refineries at all their capacity levels at all periods. And the 

ninth part of the objective function is related to the cost of 

biofuel production in refineries located in r regions at all 

periods. 
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     (1)    

Constraint 2 ensures that the marginal lands allocated for 

biomass cultivation do not exceed the maximum marginal 

lands available in each supply site i at each period t. 

t

i iY M                           
,i t

   (2)    

Constraint 3 expresses that a maximum of one refinery (at all 

capacity levels of q') can be established at any location r. 

1

1
Q

rq
q

X



=


                            r    (3)    

Constraint 4 corresponds to the capacity of each storehouse 

and states that the amount of biomass stored in warehouse j 

for any period t should not exceed the maximum capacity of 

the storehouse during that specified period. 

1 1

QI
tt

ij jq
i q

QS
= =

 
                                

,j t
  (4)    

 

Table 1. Appearance properties of accepted manuscripts 

Indices/Sets Symbols 

Biomass supply sites (i=1,...,I) i 

Biomass storage locations (j =1,...,J) j 

Refinery location (r=1,...,R) r 

Biofuel demand sites (k =1,...,K) k 

Warehouse capacity levels (q=1,..., Q) q 

Refinery capacity levels (q'= 1,...,Q') q′ 

Time periods in the modeling horizon (z =1,...,T) t 

    Binary decision variables 

{1, if a refinery with a capacity level of q′ is established in site r; otherwise 0} Xrq′ 

   Continuous decision variables 

The marginal area used in the supply site i at the period t (ha)  Yi
t
 

The amount of biomass sent from the supply site i to the warehouse j during the period t (tonne) Sii
t 

The amount of biomass sent from the warehouse j to the refinery r during the period t (tonne) Vji
t 

The volume of biofuels sent from the refinery r to the demand site k during the period t (l)  Nrk
t 

The volume of biofuels produced by the refinery r during the period t (l)  Nr
t 

   Parameters 

The annual cost of marginal land lease in the supply site i during time t ($/ha) Ci
t 

The cost of biomass cultivation in the supply site i during time t ($/ha) Cui
t 

The cost of biomass harvest in the supply site i during time t ($/ha) i
t 

The cost of biomass storage in the warehouse j during time t ($/tonne)  Sj
t 

The cost of biomass transportation from the supply site i to the warehouse j at time t ($/tonne × km)  ij
t 

Distance between supply area i and warehouse j (km) Dij 



INTERNATIONAL JOURNAL of SMART GRID  
M. Esmaeili Shayan et al., Vol.5, No.1, March, 2021 

 18 

The cost of biomass transportation from warehouse j to refinery  r during time t ($/tonne × km) jr
t 

Distance between warehouse j and refinery r (km) Dij 

The cost of biofuel transportation from refinery r to demand site k at time t ($/l × km) rk
t 

Distance between refinery r and demand site k (km) Drk 

The fixed annual cost of refinery r with a capacity level of q' at time t ($)   F t
rq' 

The cost of biofuel production in refinery r at time period t ($/l)  W t
r 

Maximum marginal land available for biomass cultivation in the supply site i (ha) Mj 

The maximum annual storage capacity of warehouse j at a capacity level of q at time period t (tonne)  Q t
jq 

Maximum biofuel production volume in refinery r with a capacity level of q' at time period t (l)    P t
rq' 

Minimum use rate of refinery r with a capacity level of q' Orq' 

The amount of biofuel needed in the demand site k at time period t (tonne/ha) Zk
t 

Biomass product in marginal lands located in the supply site i at time period t (tonne/ha) Ai
t 

Biofuels obtained from biomass in refinery r (l/tonne) r 

Biomass spoilage rate in the warehouse L 

Constraint 5 ensures that a refinery at the capacity level of q' 

(if it is installed in site r) cannot produce biofuels more than 

its capacity at each period t. 

1

Q
t t

rq rqr
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Constraint 6 ensures that the amount of biofuel production in 

all refineries at each period exceeds the minimum rate of using 

the capacity of all refineries at that period. 
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                      t        (6)    

Constraint 7 states that during each period t, the production 

capacity of all refineries is greater than or equal to the amount 

of biofuel required in all demand sites k. 

1 1 1
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rq rq k
r q k

P X Z


 
= = =

 
                         t         (7)    

Constraint 8 indicates that the amount of biomass sent from 

each storehouse to all refineries at each period should not 

exceed its usable stored amount (considering biomass losses 

in the storehouse). The biomass harvested and stored in each 

the storehouse should be allocated to one or more refineries. 

( )
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t t
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                 (8)    

Constraint 9 ensures that the amount of biomass generated in 

the time horizon in each supply site i at each period is equal to 

that sent and stored in the relevant storehouses at that period. 

1

J
tt t

i i ij
j
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       (9)    

Constraint 10 states that the amount of biomass received from 

all storage depots by each refinery r must be converted into 

biofuels throughout each period t. 

1

J
t t

r r jr
j
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=
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     (10)    

Constraint 11 expresses that during each period t, the volume 

of biofuels sent from all refineries located in r regions and 

assigned to each demand site k should not be less than the 

biofuel requirement in that site. 

1

R
t t

krk
r

N Z
=
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,kt
    (11)    

Constraint 12 ensures that at each period t for each refinery, 

biofuels sent to all demand sites do not exceed those produced 

in that refinery at that period. 

1

K
t t

rk r
k

N N
=
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,r t
       (12)    

Finally, constraints 13 and 14 describe the nature of decision 

variables used in the model. 

 0,1 ,
rqX 


                          
,r q

      (13)   

, , , , 0
t t t t

iij ir rk rS V N NY 
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                   (14)    

2.4. The ARMA Model 

The ARMA model is often used to measure time series 

data and can be used to predict the future values of these series. 

This model comprises two parts of autoregressive (A.R.) and 

moving average (M.A.) shown as p and q degrees, 

respectively, in the model. Equation 15 shows the general 

form of the ARMA (p,q) model. 

1 1

p q

t t it i t ii
i i

cZ Z  − −
= =

= + + + 
                     (15)    

In Equation 15, i and i, are the model parameters, c is 

a constant, and εt is the model error at period t. If the time 

series data are not stable, ARMA (p,d,q) model is used instead 

of ARIMA (p,q), where d is the number of differentiation 

times to stabilize data. If d equals zero, the ARIMA model will 

change into ARMA. The Box-Jenkins method is used to 

estimate the ARIMA and ARMA models, which includes the 

following steps: 

1) Identification: At this stage, several models are selected 

from the ARIMA models meaning that sample values for p 

and q are determined by considering autocorrelation and 

partial autocorrelation functions. 

2) Estimation: In this step, the model (or models) selected for 

the first time are processed on the data to estimate the 

parameters. 
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3) Evaluation: The desirability of the model selected in the 

first round and estimated in the second round is evaluated at 

the last stage based on criteria considered for the same purpose 

[27]. 

To select the optimal model, some criteria were 

presented by the researchers. In this research, the Schwarz 

Bayesian Criterion (SBC) is used to choose the best model 

with a minim SBC. It is also assumed that the demand for 

biofuels follows the ARMA (p,q) pattern. Using the ARMA 

model, therefore, the demand relationship is estimated to 

predict the demand for the subsequent periods. Then, the 

surface areas of applied marginal regions, locations, the 

optimum production volume of refineries, and optimal flow in 

the chain for subsequent periods were determined based on the 

predicted data using the proposed model for the BSC. 

2.5. Numerical Example 

In this section, a numerical example is presented to analyze 

the presented model based on the ARMA demand. Ten supply 

sites are considered for biomass cultivation, and a biomass 

collection center is located on each site. Each area is also a 

potential site for the establishment of a refinery, and the model 

determines the optimal location of refiners. It is assumed that 

the refineries must supply biofuels in these ten areas. 

2.6. Input Parameters 

The following assumptions are considered for this 

numerical example: 

1) The modeling horizon is 32 years and each year is assumed 

to be a time period (t = 1, ..., 32). 

2) Ten sections are considered as potential sites for the 

biomass cultivation (i = 1,...,10), available storage locations (j 

= 1,...,10), potential sites for the construction of a refinery (r 

= 1, ..., 10), and the biofuel demand site (k = 1, ..., 10). 

3) No seasonal effects are assumed for all periods. 

4) It is assumed that the population ratio is constant in 

different years during the time horizon and the demand of each 

region is proportional to the population of that area. 

5) All costs are considered constant during the time horizon. 

The problem input parameters are presented in Tables 2 and 

3. 

Table 2. Values of input parameters (Ct
i, At

i, Mi) 

Mi(ha) 
At

i (tonne/ha) 

per t 

Ct
i ($/ha) 

per t 
Population Area (i) 

 33508   17.2   28.4   13937   1  

 33116   17   29.6   11119   2  

 29425   20.2   53.1   16321   3  

 29021   18.1   25.9   66861   4  

 24821   16.4   28.4   8962   5  

 24725   16.7   27.2   3993   6  

 24066   17.1   39.5   21100   7  

 23556   17.5   29.6   11451   8  

 23023   15.3   28.4   2246   9  

 21623   17.1   32.1   6429   10  

 

Table 3. Values of other key input parameters 

Value Unit Parameter 

395 (for each i and t) ($/ha) Cut
i 

27.9 (for each i and t) ($/ha) i
t 

21.7 (for each i and t) ($/tonne) Sj
t 

0.18 (for each i, r, and t) ($/tonne ×km) ij
t 

0.18 (for each i, r, and t) ($/tonne ×km) jr
t 

0.000028 (for each r, k, and t) ($/l ×km) rk
t 

39000,000 (for each r, t and q' = 1); 

a refinery with an MLPY capacity 

of 760 

($) F t
rq' 

72000,000 (for each r, t and q' = 2); 

a refinery with an MLPY capacity 

of 1520 

($) F t
rq' 

0.2 (for each i and t) ($/l) W t
r 

1511975 (for each j, q, and t) (tonne) Q t
jq 

760,000,000 (for each r, t and q’ = 

1) 
(l) Pt

rq’ 

1,520,000,000 (for each r, t and q’ 

= 2) 
(l) Pt

rq’ 

0.88 (for each r and q') - Orq' 

313 (for each r) (l/tonne) r 

0.028 - L 

 

3. Results 

The proposed MILP model was first run with GAMS 

software based on the numerical example data to demonstrate 

its potential implementation for real examples. The software 

output for these data is as follows: 

The optimal BSC cost is $ 43,655,500,000, and of the ten 

potential locations for the construction of a refinery, it selects 

four sites as optimal locations and installs three refineries at 

the first capacity level in the first, third, and eighth sections, 

and one refinery at the second capacity level in the fourth 

section (Table 4). 

Table 4. Optimal locations of refineries with actual data 

Xrq’ q’ = 1 q’ = 2 
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r = 1  *   

r = 3  *   

r = 4   *  

r = 8  *   

The modeling horizon in this problem is assumed to be 32 

years, and the demand data form a time series within 32 years, 

the values of which can be predicted through ARMA 

modeling for the next years. For demand, therefore, ARMA 

modeling was implemented through Eviews 8 software. The 

results indicate that the data considered for demand follow the 

ARMA (2,1) process (Equation 16). 

1 2 1 11 2t t tt t
cZ Z Z   − − −

= + + + +
       (16)    

  Relationships 17-26 is the ARMA equations considered in 

the numerical examples for ten sections. 

1 i = 1 2 1
105000000 2.08 1. 59 51.0

t t t t tZ Z Z  − − −
− −= + +

           (17)    

2 𝑖 = 1 2 1
83793584 2.08 1.551.09

t t t t tZ Z Z  − − −
− −= + +

           (18)    

3 i = 1 2 1
123000000 2.08 1. 59 51.0

t t t t tZ Z Z  − − −
− −= + +

           (19)     

4 i = 1 2 1
504000000 2.08 1. 59 51.0

t t t t tZ Z Z  − − −
− −= + +

           (20)    

5 i = 1 2 1
67538276 2.08 1.551.09

t t t t tZ Z Z  − − −
− −= + +

           (21)    

6 i = 1 2 1
30091535 2.08 1.551.09

t t t t tZ Z Z  − − −
− −= + +

           (22)    

7 i = 1 2 1
159000000 2.08 1. 59 51.0

t t t t tZ Z Z  − − −
− −= + +

           (23)    

8 i = 1 2 1
86295559 2.08 1.551.09

t t t t tZ Z Z  − − −
− −= + +

           (24)    

9 i = 1 2 1
16926017 2.08 1.551.09

t t t t tZ Z Z  − − −
− −= + +

           (25)    

10 i = 1 2 1
48449406 2.08 1.551.09

t t t t tZ Z Z  − − −
− −= + +

                        (26)    

Through the ARMA process, the demand values  were 

predicted for eight periods after the time horizon, and the 

presented MILP model was re-run for these data. The software 

output will predict the optimum locations of biomass supply, 

the optimal location and production of refiners, and the 

optimal flow between different chain levels in the next eight 

periods. The output obtained from the model through GAMS 

software is as follows: 

The estimated optimal cost for the supply chain is $ 

185,433,000,000 which selects four locations as optimal 

places out of the ten potential sites for the refinery 

construction and establishes two first-capacity level refineries 

in the third and eighth sections and two second-capacity level 

refineries in the first and fourth sections (Table 5). 

Table 5. Optimal locations of the refineries with predicted 

data 

Xrq' q'=1 q'=2 

r=1   *  

r=3  *   

r=4   *  

r=8  *   

3.1. Validation 

The BSC model proposed in this paper was used for a 

numerical example, and then validated in two steps using the 

reproduction behavior test [28]. The ARMA model 

parameters were first estimated using the data of all periods. 

The second step compared changes in the first part demand for 

the period t = 32 to t = 4 in two actual and predicted values 

using the ARMA process. A comparison of the results of 

actual data with those predicted through the proposed ARMA 

model (Fig. 2) reveals the model's quantitative validity. 

 

Fig. 2. The trend of demand changes in both real and predicted 

situations 

4. Conclusion 

 In the statistical analysis of time series, autoregressive 

moving average models provide a parsimonious description of 

a stationary stochastic process in terms of two polynomials, 

one for the autoregression and the second for the moving 

average.  Finding appropriate values of p and q in the ARMA 

(p,q) model can be facilitated by plotting the partial 

autocorrelation functions for an estimate of p, and likewise 

using the autocorrelation functions for the estimate of q. 

extended autocorrelation functions (EACF) can be used to 

simultaneously determine p and q. 
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The commercialization of biofuels requires the design of 

an efficient supply chain network. Significant complexities in 

the BSC and the presence of uncertain variables therein have 

led to the paramount importance of the need for predicting the 

chain performance in the future to provide appropriate policies 

to increase the market share of biofuels. This article presented 

a MILP model for the design of a BSC network to minimize 

the total supply chain cost along the desired time horizon. 

Several research studies have been conducted on the 

predictions and models of biofuel refinery selection with 

various solution techniques presented over the years. The 

ARMA model, also known as the Box-Jenkins model or 

method is commonly used in analysis and forecasting. This 

model was used in source [1] for non-renewability of these 

fuels method analysis and led to increased production of this 

product. In sources [2] and [3], the supply chain model is used 

for the optimal selection of Biomass as raw material. This 

model did not provide the ability to respond to large biomass 

resources and focused only on agricultural wastes. In Source 

[4], the same problem arose with lignocellulosic biomass. 

Source [6] reviewed the present refineries and provided 

recommendations for change to transport to a refinery. In 

source [21], based on modeling customer demand, refineries 

were designed and located. Source [23] worked with ARMA 

models is to use fuzzy time series. While in the present study, 

the ARMA time-based model is widely used 

 It was used as the most efficient forecasting method in 

biofuel sciences and was validated by a numerical equation. 

This model was revised and validated based on time series for 

biofuel sources with real data. Using ARMA to predict time 

series with uncertainty is essential because knowledge does 

not assume every basic model or relationship like some other 

method. ARMA relies primarily on predicting past values in 

this set as well as previous error terms. However, these ARMA 

models designed and introduced are relatively more robust and 

efficient than more complex structural models than short-term 

predictions. 

 In this chain, fuel demand is in a time series form and 

follows the ARMA process. In this paper, the effect of the 

ARMA time series structure for biofuel demand was 

investigated on the BSC design. In this regard, a numerical 

example was used to design an optimal BSC network. Using 

the ARMA predictor models for biofuel demand, an optimal 

supply chain was also designed for eight future periods to 

provide a broader insight into the more effective design of the 

BSC chain and to minimize its total cost. 
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